







#### **Master Thesis**

presented in partial fulfillment of the requirements for the double degree: "Advanced Master in Naval Architecture" conferred by University of Liege "Master of Sciences in Applied Mechanics, specialization in Hydrodynamics, Energetics and Propulsion" conferred by Ecole Centrale de Nantes

#### Design of a hoistable helicopter platform for 60 m yacht

by Zsolt PAPP

developed at University of Genoa in the framework of the

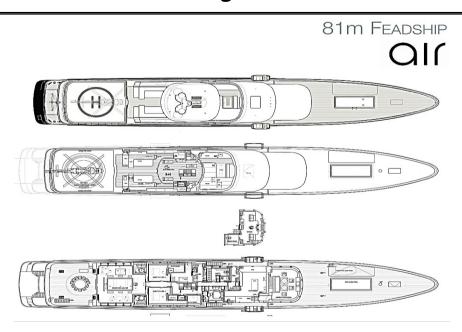
"EMSHIP" Erasmus Mundus Master Course in "Integrated Advanced Ship Design"

Supervisor: Prof. Dario Boote, University of Genoa Coordinator: Ing. Stefano Dellepiane, Lead Engineer, Azimut Benetti SPA, Livorno Reviewer: Prof. Patrick Kaeding, University of Rostock



#### Introduction




### Introduction



# Background



#### Background



### Work Purpose

Design a Certified Helideck for a 60 m yacht, considering:

- A mechanism which could allow to make it *foldable and hidden* (hoistable), while its not in used ;
- > Aesthetical impact on the vessel.

Requests fulfilled by applying direct regulatory frameworks, given by *structural and safety rules*, governed by the:

- MCA Large Yacht Code, LY2 Rules;
- UK Civil Aviation Authority Paper 2004/02;
- Lloyd's Register SSC Rules.

#### Structure

#### Preliminary Final modeling Literature and modeling of the preliminary of the landing landing area requirements area Review of the Aesthetic impact on Design of the landing applicable rules the yacht area Choice of the yacht Modeling of the and helicopter landing area Basic outfitting Review of the initial Preliminary structural deck assessment Final structural Determination of the Preliminary preview assessment geometrical constrain

#### Structure

| Literature and<br>preliminary<br>requirements | Preliminary<br>modeling of the<br>landing area | Final modeling<br>of the landing<br>area |
|-----------------------------------------------|------------------------------------------------|------------------------------------------|
| Review of the applicable rules                | Aesthetic impact on the yacht                  | Design of the landing area               |
| Choice of the yacht<br>and helicopter         | Modeling of the<br>landing area                |                                          |
| Review of the initial deck                    | Preliminary structural assessment              | Basic outfitting                         |
| Determination of the geometrical constrain    | Preliminary preview                            | Final structural<br>assessment           |

#### > Review of the applicable rules

- MCA Large Yacht Code, LY2 Rules;
- UK Civil Aviation Authority Paper 2004/02;
- Lloyd's Register SSC Rules.

#### Literature and preliminary requirements

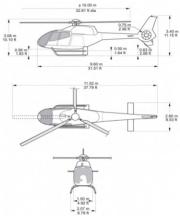
> Choice of the yacht and helicopter

- Choice of the Yacht;
- Choice of the Helicopter.

#### > Choice of the yacht and helicopter

• Choice of the Yacht:



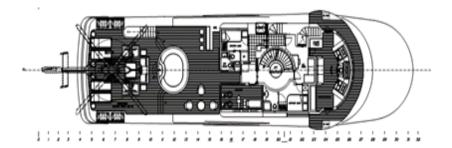

#### Literature and preliminary requirements

> Choice of the yacht and helicopter

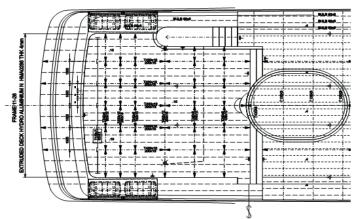
- Choice of the Yacht
- Choice of the Helicopter

#### > Choice of the yacht and helicopter

• Choice of the Helicopter

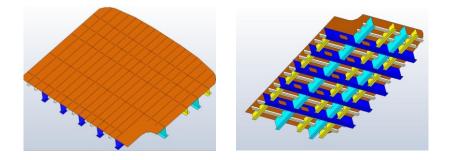



| Туре                | D value      | Perimeter | Rotor     | Max         | "t"        | Landing      |
|---------------------|--------------|-----------|-----------|-------------|------------|--------------|
|                     | (m)          | 'D'       | Diameter  | Weight      | Value      | Net size     |
| -                   | meters       | marking   | (m)       | (kg)        | tones      | -            |
| Eurocopter EC120    | <u>11.52</u> | <u>12</u> | <u>10</u> | <u>1715</u> | <u>1.7</u> | Not required |
| Bell 206 B3         | 11.96        | 12        | 10.16     | 1451/1519   | 1.5        | Not required |
| Bell 206 L4         | 12.91        | 13        | 11.28     | 2018        | 2          | Not required |
| Bell 407            | 12.61        | 13        | 10.66     | 2268        | 2.3        | Not required |
| Eurocopter EC130    | 12.64        | 13        | 10.69     | 2400        | 2.4        | Not required |
| Eurocopter AS350B3  | 12.94        | 13        | 10.69     | 2250        | 2.3        | Not required |
| Eurocopter AS355    | 12.94        | 13        | 10.69     | 2600        | 2.6        | Not required |
| Eurocopter EC135    | 12.1         | 12        | 10.2      | 2720        | 2.7        | Not required |
| Agusta A119         | 13.02        | 13        | 10.83     | 2720        | 2.7        | Not required |
| Bell 427            | 13           | 13        | 11.28     | 2971        | 3          | Not required |
| Eurocopter EC145    | 13.03        | 13        | 11        | 3585        | 3.6        | Not required |
| Agusta A109         | 13.04        | 13        | 11        | 2850        | 2.9        | Small        |
| Agusta Grand        | 12.96        | 13        | 10.83     | 3175        | 3.2        | Small        |
| Eurocopter AS365 N3 | 13.73        | 14        | 11.94     | 4300        | 4.3        | Small        |
| Eurocopter EC155 B1 | 14.3         | 14        | 12.6      | 4920        | 4.9        | Medium       |
| Bell 430            | 15.29        | 15        | 12.8      | 4218        | 4.2        | Medium       |
| Sikorsky S76        | 16           | 16        | 13.4      | 5318        | 5.3        | Medium       |
| Agusta Westland 139 | 16.66        | 17        | 13.8      | 6400        | 6.4        | Medium       |
| Bell 412            | 17.1         | 17        | 14.02     | 5398        | 5.4        | Not required |

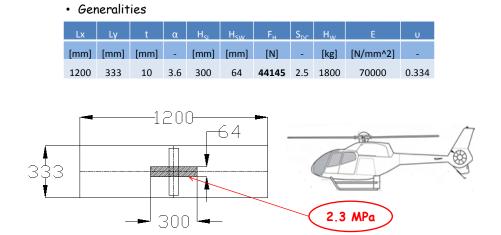

- $\succ$  Review of the initial deck
  - Description of the initial deck
  - Structural assessment of the initial helideck

#### > Review of the initial deck

• Description of the initial deck



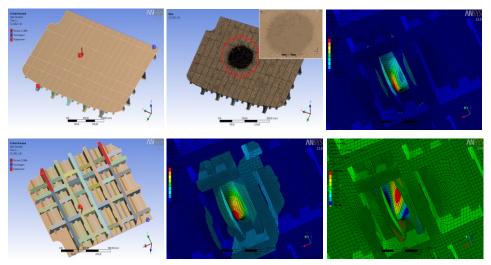

- > Review of the initial deck
  - Description of the initial deck

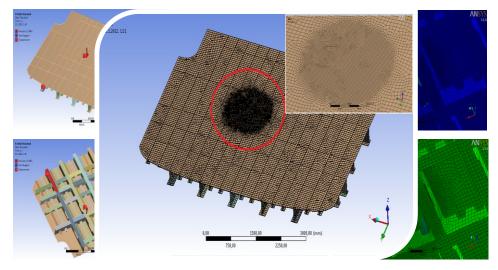



#### > Review of the initial deck

• Description of the initial deck




- $\succ$  Review of the initial deck
  - Description of the initial deck
  - Structural assessment of the initial helideck




• Structural assessment of the initial helideck

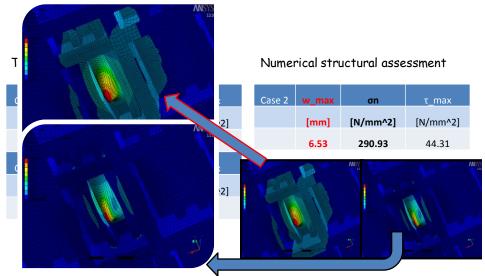
#### Literature and preliminary requirements

• Finite element method





• Finite element method


#### Literature and preliminary requirements

- Structural assessment of the initial helideck
  - Results

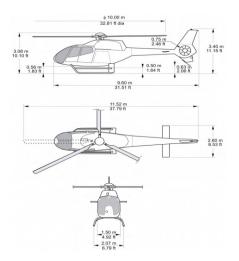
Theoretical structural assessment

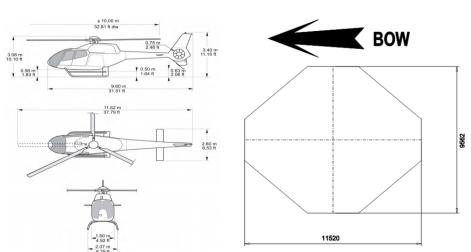
#### w max τ\_max Case 2 w max [mm] [N/mm^2] [N/mm^2] [N/mm^2] [mm] [N/mm^2] 6.53 290.93 44.31 5.125 131.024 2.728 Case 2 [mm] [N/mm^2] [N/mm^2] 7.049 180.209 3.752

Numerical structural assessment



• Structural assessment of the initial helideck


- > Determination of the geometrical constraints
  - Helicopter Landing Area Design Considerations
  - Other Design Considerations


> Determination of the geometrical constraints

- Helicopter Landing Area Design Considerations
  - Size of Landing Area (SLA)
  - Obstacle Protected Surfaces (OPS)
  - Limited Obstacle Sector (LOS)
  - Obstacle Free Areas (OFA)

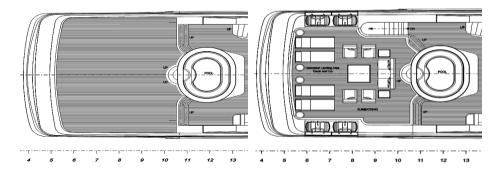
#### Literature and preliminary requirements

• Size of Landing Area (SLA)





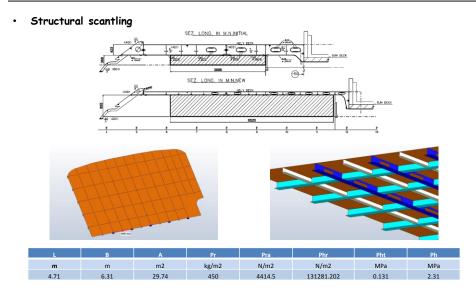
• Size of Landing Area (SLA)


- > Determination of the geometrical constraints
  - Helicopter Landing Area Design Considerations
    - Size of Landing Area (SLA)
    - Obstacle Protected Surfaces (OPS)
    - Limited Obstacle Sector (LOS)
    - Obstacle Free Areas (OFA)

#### Structure Literature and Preliminary Final modeling preliminary modeling of the of the landing landing area requirements area Aesthetic impact on Review of the Design of the landing applicable rules the yacht area Choice of the yacht Modeling of the and helicopter landing area Basic outfitting Review of the initial Preliminary structural deck assessment Final structural Determination of the Preliminary preview assessment geometrical constrain

- > Aesthetic impact on the yacht
  - Sundeck aesthetics
  - Helideck aesthetics

#### > Aesthetic impact on the yacht

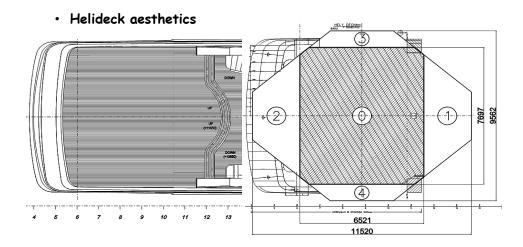

- Sundeck aesthetics
  - General arrangement

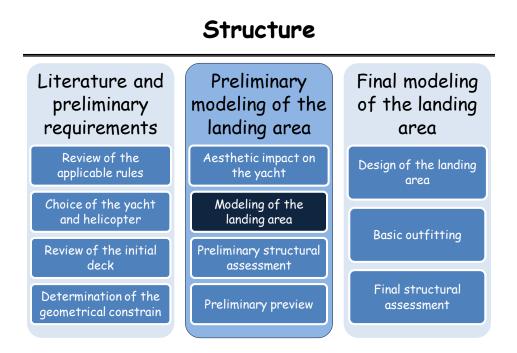


- > Aesthetic impact on the yacht
  - Sundeck aesthetics
- General arrangement

> Aesthetic impact on the yacht

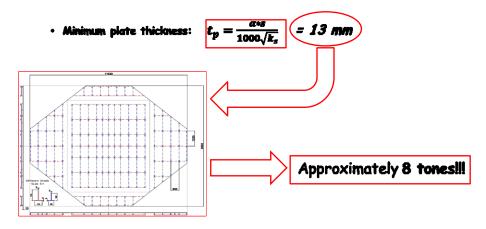
- Sundeck aesthetics
  - General arrangement
  - Structural scantling

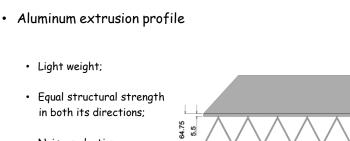




#### > Aesthetic impact on the yacht

- Sundeck aesthetics
- Helideck aesthetics

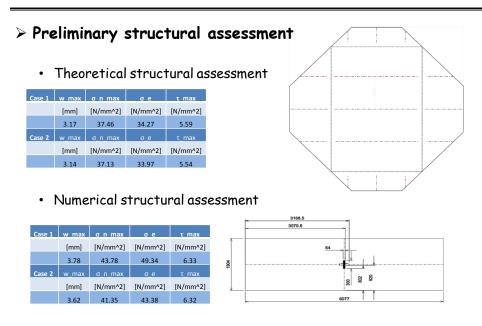
#### Preliminary modeling of the landing area


> Aesthetic impact on the yacht






#### > Modeling of the landing area


• Lloyd's Register SSC Rules:

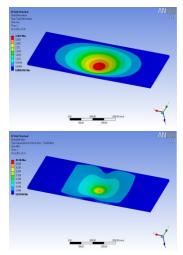




#### Noise reduction.

> Preliminary structural assessment

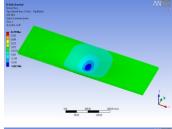


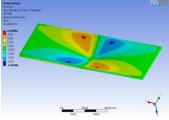

#### > Preliminary structural assessment

• Theoretical structural assessment

| Case 1 | w_max | σ_n_max  | σ_e      | τ_max    |
|--------|-------|----------|----------|----------|
|        | [mm]  | [N/mm^2] | [N/mm^2] | [N/mm^2] |
|        | 3.17  | 37.46    | 34.27    | 5.59     |
| Case 2 | w_max | σ_n_max  | σ_e      | τ_max    |
|        | [mm]  | [N/mm^2] | [N/mm^2] | [N/mm^2] |
|        | 3.14  | 37.13    | 33.97    | 5.54     |

• Numerical structural assessment


| Case 1 | w_max | σ_n_max  | σ_e      | τ_max    |
|--------|-------|----------|----------|----------|
|        | [mm]  | [N/mm^2] | [N/mm^2] | [N/mm^2] |
|        | 3.78  | 43.78    | 49.34    | 6.33     |
| Case 2 | w_max | σ_n_max  | σ_e      | τ_max    |
|        | [mm]  | [N/mm^2] | [N/mm^2] | [N/mm^2] |
|        | 3.62  | 41.35    | 43.38    | 6.32     |




### Preliminary modeling of the landing area

| Preliminary structural assessment |       |                 |                         |          |                  |                                                                                            |  |
|-----------------------------------|-------|-----------------|-------------------------|----------|------------------|--------------------------------------------------------------------------------------------|--|
| •                                 | Theo  | retical         | struct                  | rural as | sessment         | end Sec (1745) - Tay Botton<br>underski (jetun<br>1.12.6<br>05 Mar                         |  |
| Case 1                            | w max | σnmax           | σe                      | т тах    | 192<br>736<br>45 | 3<br>m                                                                                     |  |
|                                   | [mm]  | [N/mm^2]        | [N/mm^2]                | [N/mm^2] |                  | 195                                                                                        |  |
|                                   | 3.17  | 37.46           | 34.27                   | 5.59     |                  |                                                                                            |  |
| Case 2                            | w_max | σ_n_max         | σe                      | τ_max    |                  |                                                                                            |  |
|                                   | [mm]  | [N/mm^2]        | [N/mm^2]                | [N/mm^2] |                  |                                                                                            |  |
|                                   | 3.14  | 37.13           | 33.97                   | 5.54     |                  | CH.                                                                                        |  |
| •<br>Case 1                       | Nume  | ricals<br>σnmax | tructu<br><sub>σe</sub> | ral ass  | essment          | a bouitit River)-Tiglikatan<br>Loofan bjers<br>1 201<br><b>Min</b><br>6<br>8<br>101<br>101 |  |
|                                   | [mm]  | [N/mm^2]        | [N/mm^2]                | [N/mm^2] | <b>-</b> 63      | 3.9 Ma                                                                                     |  |
|                                   | 3.78  | 43.78           | 49.34                   | 6.33     |                  |                                                                                            |  |
| Case 2                            | w_max | σ_n_max         | σ_e                     | τ_max    |                  |                                                                                            |  |
|                                   | [mm]  | [N/mm^2]        | [N/mm^2]                | [N/mm^2] |                  |                                                                                            |  |

3.62 41.35 43.38 6.32





#### Structure

#### Literature and preliminary requirements

Review of the applicable rules

Choice of the yacht and helicopter

Review of the initial deck

Determination of the geometrical constrain

Preliminary modeling of the landing area

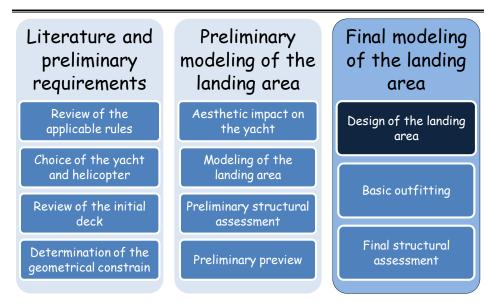
Aesthetic impact on the yacht

Modeling of the landing area

Preliminary structural assessment

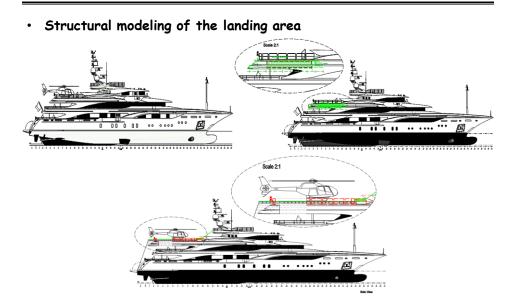
Preliminary preview

area

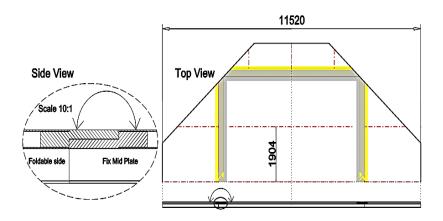

Final modeling

of the landing

Basic outfitting


Final structural assessment

#### Structure




• Structural modeling of the landing area



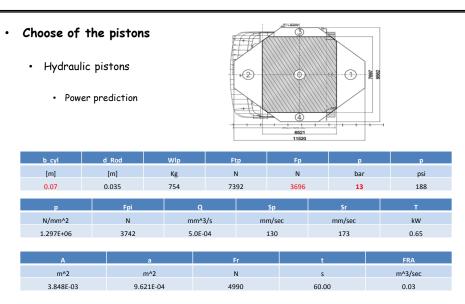


• Structural modeling of the landing area



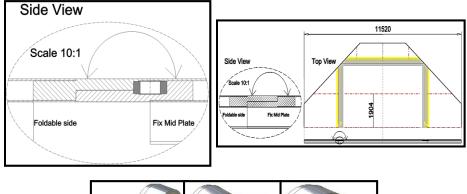
- Design of the landing area
  - Structural modeling of the landing area
  - Design of the mechanism
    - Weight analysis
    - Choose of the pistons
    - Foldable mechanism

#### • Design of the landing area

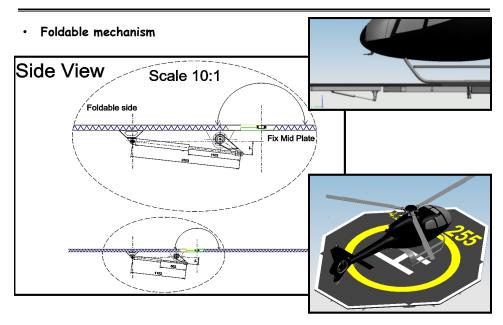

- Structural modeling of the landing area
- Design of the mechanism
  - Weight analysis

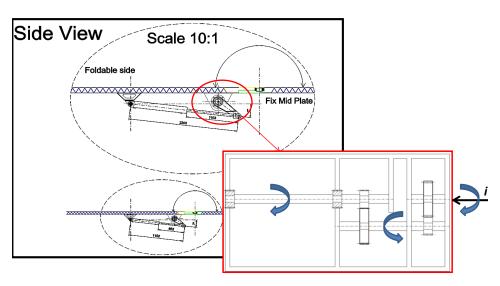
| Walsp | Walsp | Watsp | Watsp |
|-------|-------|-------|-------|
| kg    | Ν     | kg    | N     |
| 754   | 7389  | 387   | 3800  |

Where,


- Walsp weight of assembled longitudinal side plate;
- Watsp weight of assembled transvers side plate;

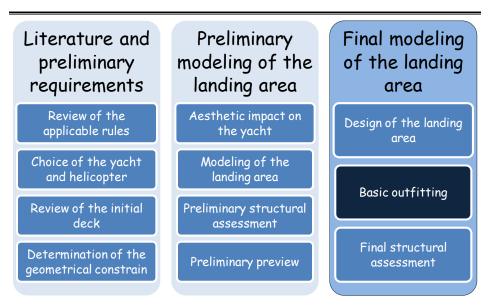
- Design of the landing area
  - Structural modeling of the landing area
  - Design of the mechanism
    - Weight analysis
    - Choose of the pistons
    - Foldable mechanism





- Design of the landing area
  - Structural modeling of the landing area
  - Design of the mechanism
    - Weight analysis
    - Choose of the pistons
    - Foldable mechanism

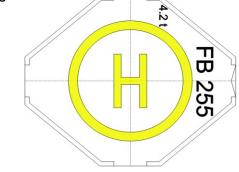
• Foldable mechanism



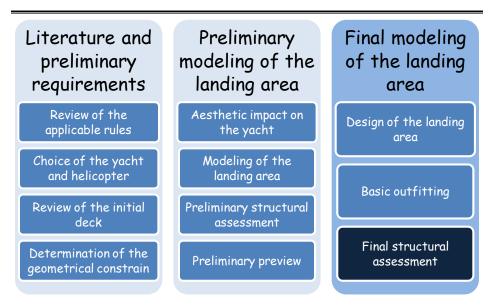




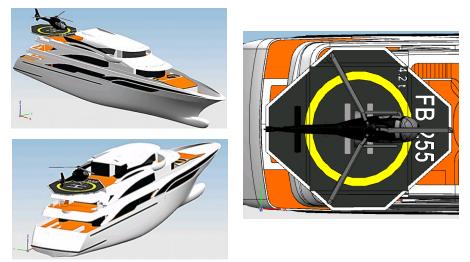




• Foldable mechanism

#### Structure

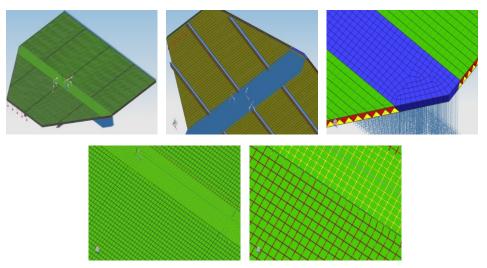


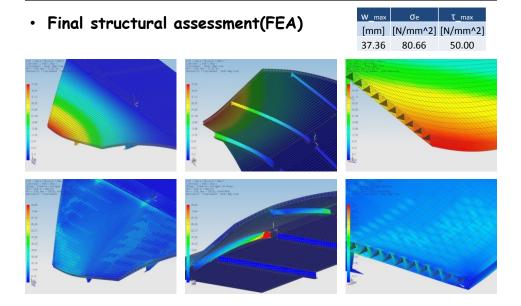

#### • Basic outfitting


- Landing area surface
- Visual Aids



#### Structure



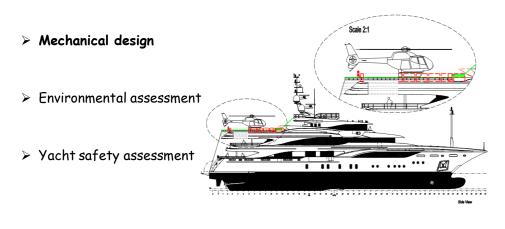


• Final structural assessment



#### Final modeling of the landing area

• Final structural assessment (FEA)

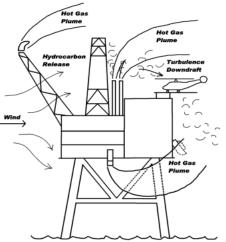





### Conclusions

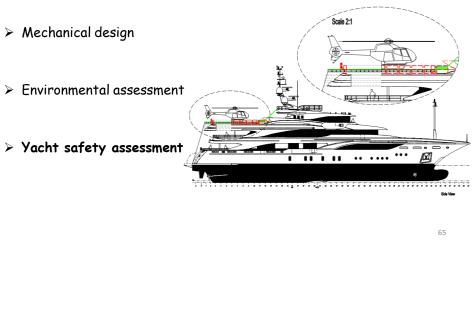
- It is very difficult to provide a "small" (less than 70 m) vessel with a helideck (purpose-built helicopter landing area, commercial use);
- A helideck upon a vessel may affect significantly the General Arrangement;
- · Structural assessment it's a difficult design key,
- Aluminum extrusion profiles showed a good agreement;
- The *foldable mechanism solutions*, shows relatively *good agreement*, *simple construction*, and can even be *fitted really easily with the yacht and helideck aesthetic*.

### Conclusions


Further considerations:



#### 63


#### Conclusions

Further considerations: Hot Gas > Mechanical design > Environmental assessment > Yacht safety assessment



#### Conclusions

#### Further considerations:







# Thank **you** for your attention!

"Helicopters can land anywhere, if the landing place has the required size."

Nigel Watson

"Fast, agile, but also extremely delicate: Helicopters have become an integral part of superyacht operations. The number of these fascinating, high-maintenance, airborne tenders – just like their size – is growing."

Martin Hager

